Thursday, December 10, 2015

Free To Be...


"They're going to take away our freedom,"

says the guy who spends ten hours a day at a job he dislikes bookended by two awful one-hour commutes.

"They're going to take away our freedom,"

says the gal who gave up a career in medicine to marry her college sweetheart and have two kids by the age of twenty-six.

"They're going to take away our freedom,"

says the morbidly obese guy who avoids going upstairs these days because stairs.

"They're going to take away our freedom,"

says the guy who spends three hours each evening arguing online about gun rights.


You keep going on about freedom when all you've ever done is voluntarily give yours away.

Wednesday, December 2, 2015

Equation of Geodesic From Lagranian Equations of Motion

From Schutz (A First Course in General Relativity, Second Edition) we have:
Eq. 6.7 and Eq. 6.8

$l=\int_{\lambda_{0}}^{\lambda _{1}}\left | g_{\alpha \beta }\frac{\mathrm{d} x^{\alpha }}{\mathrm{d} \lambda}\frac{\mathrm{d} x^{\beta }}{\mathrm{d}\lambda }\right |^{1/2}d\lambda $

$l=\int_{\lambda_{0}}^{\lambda _{1}}\left | \vec{V}\cdot \vec{V}\right |^{1/2}d\lambda $

We'll also need Eq. 6.32 from Schutz:

$\Gamma ^{\alpha }_{\mu \beta }=\frac{1}{2}g^{\alpha \beta }\left ( g_{\beta \mu ,\upsilon } +g_{\beta \upsilon ,\mu }-g_{\mu \upsilon ,\beta }\right )$

We need to end up with Schutz, Eq. 6.51 as our result (geodesic equation):

$\frac{\mathrm{d} }{\mathrm{d} \lambda }\left ( \frac{\mathrm{d} x^{\alpha }}{\mathrm{d} \lambda } \right )+\Gamma ^{\alpha }_{\mu \beta }\frac{\mathrm{d} x^{\mu }}{\mathrm{d} \lambda }\frac{\mathrm{d} x^{\beta }}{\mathrm{d} \lambda }=0$

We'll start with the Euler-Lagrange equations:

$\frac{\partial L}{\partial q_{i}}-\frac{\mathrm{d} }{\mathrm{d} t}\left ( \frac{\partial L}{\partial \dot{q}_{i}} \right )=0$,

where L is the integrand fuction of Eq. 6.7, ${q}_{i}$ are the generalized coordinates of L, and t =$\lambda$

$L=\left | g_{\alpha \beta }\frac{\mathrm{d} x^{\alpha }}{\mathrm{d} \lambda }\frac{\mathrm{d} x^{\beta }}{\mathrm{d} \lambda }\right |^{1/2}$, and let
$F= g_{\alpha \beta }\frac{\mathrm{d} x^{\alpha }}{\mathrm{d} \lambda }\frac{\mathrm{d} x^{\beta }}{\mathrm{d} \lambda }$

switching from Leibniz notation to Newton dot notation... $\frac{\mathrm{d} x^{\mu }}{\mathrm{d} \lambda }=\dot{x}^{\mu }$ and calculating derivatives:

$\frac{\partial L}{\partial x^{\mu }}=\frac{F}{2\left | F \right |^{3/2}}*g_{\alpha \beta ,\mu }\dot{x}^{\alpha }\dot{x}^{\beta }$

$\frac{\mathrm{d} }{\mathrm{d} \lambda }\left ( \frac{\partial L}{\partial \dot{x}^{\mu }} \right )=\frac{\mathrm{d} }{\mathrm{d} \lambda }\left [\frac{F}{2\left | F \right |^{3/2}}*g_{\alpha \beta }\left ( \frac{\partial \dot{x}^{\alpha }}{\partial \dot{x}^{\mu }} \dot{x}^{\beta }+\frac{\partial \dot{x}^{\beta }}{\partial \dot{x}^{\mu }}\dot{x}^{\alpha }\right )\right ]$

using $\frac{\partial \dot{x}^{\alpha }}{\partial \dot{x}^{\mu }}=\delta ^{\alpha }_{\mu }$ and making the appropriate substitutions into the Euler-Lagrange equation gives:

$\frac{F}{2\left | F \right |^{3/2}}*g_{\alpha \beta ,\mu}\dot{x}^{\alpha }\dot{x}^{\beta }-\frac{\mathrm{d} }{\mathrm{d} \lambda }\left [\frac{F}{2\left | F \right |^{3/2}}\left ( g_{\mu \beta } \dot{x}^{\beta }+g_{\alpha \mu }\dot{x}^{\alpha }\right )  \right ]=0$

the derivative on the L.H.S. includes two subterms with a factor of $\frac{\mathrm{d} F}{\mathrm{d} \lambda }$, but since $F=\vec{V}\cdot \vec{V}$, then $\frac{\mathrm{d} F}{\mathrm{d} \lambda }=0$ and we have:

$\frac{F}{2\left | F \right |^{3/2}}*g_{\alpha \beta ,\mu }\dot{x}^{\alpha }\dot{x}^{\beta }-\frac{F}{2\left | F \right |^{3/2}}\left ( g_{\mu \beta ,\alpha } \dot{x}^{\alpha }\dot{x}^{\beta }+g_{\alpha \mu ,\beta }\dot{x}^{\alpha }\dot{x}^{\beta }+g_{\mu \beta }\ddot{x}^{\beta }+g_{\alpha \mu }\ddot{x}^{\alpha }\right )=0$

Almost there... canceling like factors in each term of the L.H.S., using the symmetry of $g_{\alpha \beta }$, and relabeling dummy indices, we end up with:

$g_{\mu \beta ,\alpha }\dot{x}^{\alpha }\dot{x}^{\beta }+g_{\alpha \mu .\beta  }\dot{x}^{\alpha }\dot{x}^{\beta }-g_{\alpha \beta ,\mu  }\dot{x}^{\alpha }\dot{x}^{\beta }+2g_{\alpha \beta }\ddot{x}^{\mu }=0$

Making a substitution into this equation using Schutz Eq. 6.32 and going back to Leibniz notation exclusively for the derivatives gives:

$2g_{\alpha \beta }\Gamma ^{\mu }_{\alpha \beta }\frac{\mathrm{d} x^{\alpha }}{\mathrm{d} \lambda }\frac{\mathrm{d} x^{\beta }}{\mathrm{d} \lambda }+2g_{\alpha \beta }\frac{\mathrm{d} }{\mathrm{d} \lambda }\left ( \frac{\mathrm{d} x^{\mu }}{\mathrm{d} \lambda } \right )=0$

which obviously becomes:

$\Gamma ^{\mu }_{\alpha \beta }\frac{\mathrm{d} x^{\alpha }}{\mathrm{d} \lambda }\frac{\mathrm{d} x^{\beta }}{\mathrm{d} \lambda }+\frac{\mathrm{d} }{\mathrm{d} \lambda }\left ( \frac{\mathrm{d} x^{\mu }}{\mathrm{d} \lambda } \right )=0$    Q.E.D.





Related Posts Plugin for WordPress, Blogger...