$$< x> = \int \Phi^{*}\left ( -\frac{\hbar}{i}\frac{\partial }{\partial p} \right )\Phi dp$$
In the first edition, we're given
$$\Phi(p,t)=\frac{1}{\sqrt{2\pi \hbar}}\int_{-\infty}^{\infty}e^{-ipx/\hbar}\Psi(x,t)dx (1)$$
We know $<x>=\int_{-\infty}^{\infty}x|\Psi(x,t)|^{2}dx$, so we just need to show that
$$\int \Phi^{*}\left ( -\frac{\hbar}{i}\frac{\partial }{\partial p} \right )\Phi dp=\int x|\Psi(x,t)|^{2}dx$$
Easier said than done, but here we go. It's not too bad, actually...
$$\int \Phi^{*}\left ( -\frac{\hbar}{i}\frac{\partial }{\partial p} \right )\Phi dp$$
Using (1) gives
$$ \int \left [ \frac{1}{\sqrt{2\pi \hbar}}\int e^{ipx^{'}/\hbar}\Psi^{*}dx^{'} \right ]\left ( -\frac{\hbar}{i} \frac{\partial }{\partial p}\right )\left [ \frac{1}{\sqrt{2\pi \hbar}}\int e^{-ipx/\hbar}\Psi dx \right ]dp$$
Simplifying a little...
$$\int \left [ \frac{1}{\sqrt{2\pi \hbar}}\int e^{ipx^{'}/\hbar}\Psi^{*}dx^{'} \right ]\left [ \frac{1}{\sqrt{2\pi \hbar}}\int i\hbar\frac{\partial }{\partial p} e^{-ipx/\hbar}\Psi dx \right ]dp (2)$$
Consider the integrand function in the second set of brackets. In particular, $i\hbar\frac{\partial }{\partial p} e^{-ipx/\hbar}$.
Using the fact that $\frac{\mathrm{d} }{\mathrm{d} p}\left ( e^{-ipx/\hbar} \right )= -\frac{ix}{\hbar} e^{-ipx/\hbar}$ we can rewrite (2) using $x e^{-ipx/\hbar}$ in place of $i\hbar \frac{\partial }{\partial p}\left ( e^{-ipx/\hbar} \right )$ ...
$$\int \left [ \frac{1}{\sqrt{2\pi \hbar}}\int e^{ipx^{'}/\hbar}\Psi^{*}dx^{'} \right ]\left [ \frac{1}{\sqrt{2\pi \hbar}}\int x e^{-ipx/\hbar} \Psi dx \right ]dp$$
Simplifying further and using Fubini's Theorem gives
$$\frac{1}{2\pi \hbar}\int \int \int \left [ e^{ipx^{'}/\hbar}\Psi^{*} x e^{-ipx/\hbar}\Psi \right ]dx^{'}dxdp (3)$$
Letting $y = \frac{p}{\hbar}$ and simplifying the integrand further gives
$$\frac{1}{2\pi }\int \int \int \left [ e^{-i(x-x^{'})/y} \Psi^{*} x \Psi \right ]dx^{'}dxdy (4)$$
Evaluating the y-integral first...
$$\frac{1}{2\pi }\int e^{-i(x-x^{'})/y}dy = \delta (x-x^{'})$$
If you're not comfortable with this, check it for yourself by using Plancherel's Theorem to determine the Fourier transform of $\delta(x)$.
Now we have
$$\int \int \delta(x-x^{'}) \Psi^{*}(x^{'},t) x \Psi (x,t) dx^{'}dx (5)$$
But $ \int \delta(x-x^{'}) \Psi^{*}(x^{'},t) = \Psi^{*} (x,t)$ (see Eq. 3.129 in the first edition and Eq. 3.52 in the second edition), so we have
$$\int \Psi^{*}x \Psi dx = \int x |\Psi (x,t)|^{2}dx$$
QED
No comments:
Post a Comment