The first property: The transpose of a product is the product of the transposes in reverse order...
$$\widetilde{\mathbf{ST}}=\widetilde{\mathbf{T}}\widetilde{\mathbf{S}}$$
$$\widetilde{\mathbf{ST}}$$
$$=(ST)_{ji}$$
$$=\sum_{k=1}^{n}S_{jk}T_{ki}$$
$$=\sum_{k=1}^{n}\widetilde{S}_{kj}\widetilde{T}_{ik}$$
$$=\sum_{k=1}^{n}\widetilde{T}_{ik}\widetilde{S}_{kj}$$
$$=\mathbf{\widetilde{T}}\mathbf{\widetilde{S}}$$
QED
The second property: The Hermitian conjugate of a product is the product of the Hermitian conjugates in reverse order...
$$(\mathbf{ST})^{\dagger }=\mathbf{T}^{\dagger }\mathbf{S}^{\dagger }$$
$$(\mathbf{ST})^{\dagger }$$
$$=(\widetilde{\mathbf{ST}})^{*}$$
$$=(\mathbf{\widetilde{T}}\mathbf{\widetilde{S}})^{*}$$
$$=\mathbf{\widetilde{T}}^{*}\mathbf{\widetilde{S}}^{*}$$
$$=\mathbf{T}^{\dagger }\mathbf{S}^{\dagger }$$
QED
No comments:
Post a Comment