The first property: The transpose of a product is the product of the transposes in reverse order...
\widetilde{\mathbf{ST}}=\widetilde{\mathbf{T}}\widetilde{\mathbf{S}}
\widetilde{\mathbf{ST}}
=(ST)_{ji}
=\sum_{k=1}^{n}S_{jk}T_{ki}
=\sum_{k=1}^{n}\widetilde{S}_{kj}\widetilde{T}_{ik}
=\sum_{k=1}^{n}\widetilde{T}_{ik}\widetilde{S}_{kj}
=\mathbf{\widetilde{T}}\mathbf{\widetilde{S}}
QED
The second property: The Hermitian conjugate of a product is the product of the Hermitian conjugates in reverse order...
(\mathbf{ST})^{\dagger }=\mathbf{T}^{\dagger }\mathbf{S}^{\dagger }
(\mathbf{ST})^{\dagger }
=(\widetilde{\mathbf{ST}})^{*}
=(\mathbf{\widetilde{T}}\mathbf{\widetilde{S}})^{*}
=\mathbf{\widetilde{T}}^{*}\mathbf{\widetilde{S}}^{*}
=\mathbf{T}^{\dagger }\mathbf{S}^{\dagger }
QED
No comments:
Post a Comment