Processing math: 100%

Tuesday, November 5, 2013

Proof of Plancherel's Theorem: Quantum Mechanics (Griffiths)

Problem 2.20 from chapter two of David J. Griffiths' "Introduction to Quantum Mechanics: 2nd Edition" takes the student through a step-by-step proof of Plancherel's Theorem:

f(x)=\frac{1}{\sqrt{2\pi }}\int_{-\infty}^{\infty}F(k)e^{ikx}dk \Leftrightarrow F(k)=\frac{1}{\sqrt{2\pi }}\int_{-\infty}^{\infty}f(x)e^{-ikx}dx

where F(k) is the Fourier transform of f(x), and f(x) is the inverse Fourier transform of F(k).

Step 1
First, Griffiths asks us to show that a function f(x) on the interval [-a, a] expanded as a Fourier series

f(x)=\sum_{n=0}^{\infty}[a_{n}sin(n\pi x/a)+b_{n}cos(n\pi x/a)]               [1]     
          
can be written equivalently as

f(x)=\sum_{n=-\infty}^{\infty}c_{n}e^{in\pi x/a}      [2]

and to write c_{n} in terms of a_{n} and b_{n}

If we look at n = 0, [1] --> f(x) = b_{0}
Now, use Euler's identity e^{i\phi }=cos(\phi)+isin(\phi) to rewrite [1] as

f(x)=b_{0}+\sum_{n=1}^{\infty}\frac{a_{n}}{2i}(e^{in\pi x/a}-e^{-in\pi x/a})+\sum_{n=1}^{\infty}\frac{b_{n}}{2}(e^{in\pi x/a}+e^{-in\pi x/a})

And, rearranging this a little...

f(x)=b_{0}+\sum_{n=1}^{\infty}\left \{ \frac{a_{n}}{2i}+\frac{b_{n}}{2} \right \}e^{in\pi x/a}+\sum_{n=1}^{\infty}\left \{ \frac{-a_{n}}{2i} +\frac{b_{n}}{2}\right \}e^{-in\pi x/a}           [3]

Evaluating [3] with n = 1 gives

f(x)=\frac{1}{2}\left ( -ia_{1} +b_{1}\right )e^{i\pi x/a}+\frac{1}{2}\left ( ia_{1} +b_{1}\right )e^{-i\pi x/a}         [4]

Now, let's evaluate [2] with both n = -1 and n = 1
n = 1:   
f(x)=c_{1}e^{i\pi x/a}

n = -1: 
f(x)=c_{-1}e^{-i\pi x/a}

These two terms look like the two terms in [4] if c_{1} = \frac{1}{2}\left ( -ia_{1} +b_{1}\right ) and  c_{-1} = \frac{1}{2}\left ( ia_{1} +b_{1}\right ) (Remember, [3] sums on n from 1 to infinity, but [2] sums on n from negative infinity to positive infinity, so including the -n terms and the +n terms in [2] will give you the same two terms you get when evaluating [3] with only the +n terms.)

So, in general, f(x)=\sum_{n=0}^{\infty}[a_{n}sin(n\pi x/a)+b_{n}cos(n\pi x/a)] can be written equivalently as


f(x)=\sum_{n=-\infty}^{\infty}c_{n}e^{in\pi x/a}
with c_{n} = \frac{1}{2}\left ( -ia_{n} +b_{n}\right ), c_{-n} = \frac{1}{2}\left ( ia_{n} +b_{n}\right ), and c_{0} = b_{0} 
QED

Step 2
Next, we are asked to show that

c_{n}=\frac{1}{2a}\int_{-a}^{+a}f(x)e^{-in\pi x/a}dx                [5]  

by using what Griffiths refers to as 'Fourier's Trick', which exploits the orthonormality of wavefunctions of different excited states.

The 'trick' is to multiply both sides of [2] by \psi _{m}^{*} and integrate. Of course, in this case \psi _{n}=e^{in\pi x/a}.

f(x)=\sum_{n=-\infty}^{\infty}c_{n}e^{in\pi x/a}

\int_{-a}^{+a}\psi _{m}(x)^{*}f(x)dx = \sum_{n=-\infty}^{\infty}c_{n}\int_{-a}^{+a}\psi _{m}^{*}(x)\psi _{n}(x)dx=\sum_{n=-\infty}^{\infty}2ac_{n}\delta _{mn}=2ac_{m}

The orthonormality of \psi_{m}^{*} and \psi_{m} knocks out all the terms except for the n = m one, thus the appearance of the Kronecker delta.

So now we have

\int_{-a}^{+a}\psi_m^{*}(x)f(x)dx=2ac_{m}

Swapping indices (m for n) gives

\int_{-a}^{+a}\psi_n^{*}(x)f(x)dx=2ac_{n}

Finally, solving for c_{n} and remembering that \psi _{n}=e^{in\pi x/a} gives us

\frac{1}{2a}\int_{-a}^{+a}f(x)e^{-in\pi x/a}dx=c_{n}
QED

Step 3
Next, we are told to eliminate n and c_{n} and use the new variables k = (n\pi /a) and F(k) = \sqrt{\frac{2}{\pi }}ac_{n} and show that [2] becomes

f(x)=\frac{1}{\sqrt{2\pi} }\sum_{n=-\infty}^{\infty}F(k)e^{ikx}\Delta k

and [5] (Step 2) becomes

F(k)=\frac{1}{\sqrt{2\pi} }\int_{-a}^{+a}f(x)e^{-ikx}dx

F(k) = \sqrt{\frac{2}{\pi }}ac_{n} solved for c_{n} gives c_{n} = \frac{1}{a}F(k)\sqrt{\frac{\pi }{2}}. Also, we know that \Delta k=\frac{\Delta n\pi}{a} \Delta n = 1 so \frac{\Delta k}{\pi }= \frac{1}{a}

Substituting these results into [2] gives

f(x)=\frac{\Delta k}{\pi }\sqrt{\frac{\pi }{2}}\sum_{n=-\infty}^{\infty}F(k)e^{ikx}=\frac{1}{\sqrt{2\pi }}\sum_{n=-\infty}^{\infty}F(k)e^{ikx}\Delta k     QED

That takes care of f(x); Now for F(k)...

c_{n}=\frac{1}{2a}\int_{-a}^{+a}f(x)e^{-in\pi x/a}dx                [5]

But c_{n} = \frac{1}{a}F(k)\sqrt{\frac{\pi }{2}}, so [5] becomes

\frac{1}{a}F(k)\sqrt{\frac{\pi }{2}}= \frac{1}{2a}\int_{-a}^{+a}f(x)e^{-in\pi x/a}dx

A little algebra and an appropriate substitution gives

F(k) = \frac{1}{\sqrt{2\pi}}\int_{-a}^{+a}f(x)e^{-ikx}dx       QED


Final Step
To complete the proof of Plancherel's Theorem, we are asked to take the limit a \rightarrow\infty for the two results from Step 3

1st, f(x)...

\lim_{\Delta k\rightarrow 0}f(x)=\lim_{\Delta k\rightarrow 0}\frac{1}{\sqrt{2\pi }}\sum_{n=-\infty}^{\infty}F(k)e^{ikx}\Delta k = \frac{1}{\sqrt{2\pi }}\int_{-\infty}^{\infty}F(k)e^{ikx}dk 

Now, F(k)...

\lim_{a\rightarrow \infty}F(k) = \lim_{a\rightarrow \infty}\frac{1}{\sqrt{2\pi}}\int_{-a}^{+a}f(x)e^{-ikx}dx = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f(x)e^{-ikx}dx

So, finally we have Plancherel's Theorem as our result

f(x) = \frac{1}{\sqrt{2\pi }}\int_{-\infty}^{\infty}F(k)e^{ikx}dk \Leftrightarrow F(k) = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f(x)e^{-ikx}dx

QED

1 comment:

  1. Isn't this called Fourier's inversion theorem instead?

    ReplyDelete

Related Posts Plugin for WordPress, Blogger...